Резюме проекта, выполниенного

в рамках ФЦП

«Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2014 – 2020 годы»

по этапу № 3

Номер Соглашения о предоставлении субсидии: 14.574.21.0004

Тема: «Разработка технологических принципов инновационного способа получения электрохромных покрытий с повышенной стабильностью на основе наноструктурированных функциональных материалов берлинская лазурь-проводящий полимер одноэтапным методом химического или электрохимического осаждения»

Приоритетное направление: Индустрия наносистем

Критическая технология: Технологии получения и обработки функциональных наноматериалов

Период выполнения: 17.06.2014 - 31.12.2015

Плановое финансирование проекта: 11.20 млн. руб.

Бюджетные средства 9.40 млн. руб.,

Внебюджетные средства 1.80 млн. руб.

Получатель: федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химикотехнологический университет имени Д.И. Менделеева"

Индустриальный партнер: Общество с ограниченной ответственностью "Ай Ди Эй Технологии"

Ключевые слова: ЭЛЕКТРОХРОМНЫЕ ПОКРЫТИЯ, СМАРТ-СТЕКЛА, БЕРЛИНСКАЯ ЛАЗУРЬ, ПОЛИПИРРОЛ, НАНОСТРУКТУРИРОВАННЫЕ КОМПОЗИТЫ, ЭЛЕКТРОАКТИВНЫЕ ПЛЕНКИ, ТЕХНОЛОГИЯ ПОКРЫТИЙ

1. Цель проекта

Данный Проект направлен на решение проблемы разработки технологических принципов получения стабильных электрохромных покрытий на основе наноструктурированных композитов берлинской лазури и проводящего полимера для создания смарт-стекол. 2) В рамках сформулированной проблемы конкретной целью реализуемого Проекта является разработка лабораторной технологии получения стабильных электрохромных покрытий на основе наноструктурированных функциональных композитов берлинской лазури и проводящего полимера одноэтапным методом химического или электрохимического осаждения.

2. Основные результаты проекта

На 1 этапе были проведены аналитический обзор литературы, патентные исследования, выбор и обоснование направления исследований, разработаны методики одноэтапного химического и электрохимического синтеза композиционных покрытий берлинская лазурь - полипиррол. На 2 этапе разработаны методика характеристики качества нанесения, сплошности, толщины и морфологии композитов, а также программа и методика испытания их электрохромной активности и стабильности перехода. Все образцы прошли испытания по разработанным методикам. Выявлены образцы, обладающие оптимальными свойствами с точки зрения электрохромной активности и стабильности электрохромного перехода. Выявлены оптимальные условия, на основании которых разработан технологический регламент получения композитных электрохромных покрытий на основе берлинской лазури и полипиррола одноэтапным и проект ТЗ на ОТР.

По итогам патентных исследований было определено, что разработанные на первом этапе методики синтеза композиционных покрытий берлинская лазурь - полипиррол являются уникальными и не имеют аналогов в России и Зарубежом. По данным методикам был выполнен синтез 16 образцов пленок берлинская лазурь-полипиррол на стеклянных (диэлектрических) (8 шт.) и ИТО (проводящих) (8шт), а также 4 образца на платиновой подложках методом одноэтапного редокс-синтеза (химическое осаждение) из растворов с различным соотношением миллимолярных концентраций прекурсоров Fe 3+:[Fe(CN)6] 3-: Py 1:1:5; 1:1:10; 1:1:1; 1:1:2, а так же электрохимическим методом одноэтапного синтеза в режиме двойных скачков потенциала (тока) получено 16 образцов на ИТО проводящей подложке из растворов 0.1 мМ (или 0.5 мМ) Fe (III) и [Fe(CN)6] (III) с 0.5 мМ Ру с разным числом серий осаждения. Разработанные на втором этапе данного Проекта методика исследования лабораторных образцов покрытия и Программа и методики испытания лабораторных образцов покрытий на электропроводящих подложках так же не имеют аналогов в мире и позволяют полностью оценить основные технологические свойства полученных образцов

покрытий. Разработанные на 3 этапе проекта лабораторный технологический регламент и проект ТЗ на ОТР, а также проведенные обобщение результатов работ, технико-экономическая оценка и маркетинговые исследования позволяют сделать вывод о том, что разработанные в рамках проекта научно-технические результаты являются экономичными, экологичными и перспективными для дальнейшей коммерциализации. Полученные результаты соответствуют требованиям ТЗ. Полученные результаты имеют огромное значение, т.к. технологий для создания смарт-стекол в России нет.

3. Охраноспособные результаты интеллектуальной деятельности (РИД), полученные в рамках прикладного научного исследования и экспериментальной разработки

Подана заявка на патент №21015123279 от 17.06.2015 «Способ получении композитных пленок берлинская лазурь/полипиррол со стабильным электрохромным переходом» авторов Золотухина Е.В., Талагаева Н.В., Воротынцев М.А. Страна патентования - Россия.

4. Назначение и область применения результатов проекта

Основной областью применения электрохромных покрытий является архитектура и автомобильная промышленность, поскольку использование электрохромных покрытий позволяет получать так называемые «умные (или "смарт") стекла», способные изменять свои оптические свойства при наложении внешнего электрического тока (напряжения). В результате реализации ПНИ на втором этапе разработан конкурентоспособный способ создания электрохромных покрытий, являющийся новым для российского рынка и превышающий по своим параметрам мировой уровень. Заинтересованность в технологических решениях получения смарт- стекол в настоящее время очень велика, поскольку российских технологий для получения таких покрытий пока нет.

5. Эффекты от внедрения результатов проекта

Экономическая значимость работы определяется простотой технологических решений, разработанных для синтеза пленок, их соответствию принципам "зеленой" химии, использованием относительно недорогих компонентов синтеза.

6. Формы и объемы коммерциализации результатов проекта

Результаты Проекта имеют коммерческую ценность: результаты интеллектуальной деятельности будут реализованы индустриальным партнером и на их основе получены прототипы смарт-стекол. Кроме того, в России интерес к данным исследованиям могут проявить следующие компании: НТМДТ (Зеленоград), Plastic Logic (Зеленоград), ЦНИИ "Циклон", который уже выпускает микродисплеи на основе OLED, а также OOO "Хевел" - совместное предприятие Государственной корпорации "Российская корпорация нанотехнологий" (РОСНАНО) и Группы компаний "Ренова".

7. Наличие соисполнителей

М.П.

На 1 (07.10.2014-07.11.2014гг) и 2 (27.04.2015-27.05.2015) этапах для выполнения работ по Соглашению привлекалась организация-соисполнитель Научно-производственное объединение центрального института инжиниринга и наукоемких технологий «Машхимпром».

редеральное государственное бюджетное образовательное		
учреждение высшего образования "Российский химико-		
гехнологический университет имени Д.И. Менделеева"		
• •		
И.О. ректора		Аристов В.М.
(должность)	(подпись)	(фамилия, имя, отчество)
Руководитель работ по проекту		
Старший научный сотрудник		Золотухина Е.В.
(должность)	(подпись)	(фамилия. имя. отчество)