Преподаватели и сотрудники

Ярёменко Иван Андреевич

Занимаемые должности

Ассистент (Кафедра химии и технологии биомедицинских препаратов)

Телефон

8-495-495-13-27

E-mail

ivan_yaremenko@muctr.ru

Сайт https://muctr.ru
Уровень образования Высшее
Квалификация

Инженер

Преподаваемые дисциплины

Химические основы биологических процессов

Медицинская химия (практикум)

Наименование направления подготовки и (или) специальности

Химическая технология орагических веществ

Данные о повышении квалификации и (или) профессиональной переподготовке

Физиологические основы функциональной диагностики, РХТУ им. Д.И. Менделеева, 72 ч., с 01.03.17 по 20.04.17, повышение квалификации, Удостоверение №772404089979

Общий стаж работы 12 лет (с 01.09.2007)
Стаж работы по специальности 9 лет (с 01.10.2010)

Публикации

Применение циклических пероксидов в качестве фунгицидных средств / П. С. Радулов, Ю. Ю. Белякова, И. А. Ярёменко, А. О. Терентьев // Аграрная наука. — 2019. — Т. 2. — С. 169–171. [ DOI ]

Селективный синтез циклических трипероксидов из 1,1´-дигидропероксиди(циклоалкил)пероксидов и кеталей с использованием sncl4 / П. С. Радулов, Ю. Ю. Белякова, А. А. Демина и др. // Известия Академии наук. Серия химическая. — 2019. — Т. 6. — С. 1289–1292.

New organic peroxides with valuable properties / A. O. Terent'ev, P. S. Radulov, I. A. Yaremenko et al. // Journal of Chemical Engineering & Process Technology. — 2018. — Vol. 1, no. 1. — P. 40.

Novel peroxides as promising anticancer agents with unexpected depressed antimalarial activity / P. Coghi, I. A. Yaremenko, P. Prommana et al. // ChemMedChem. — 2018. Twenty six peroxides belonging to bridged 1,2,4,5‐tetraoxanes, bridged 1,2,4‐trioxolanes (ozonides), and tricyclic monoperoxides were evaluated for their in vitro antimalarial activity against Plasmodium falciparum (3D7) and for their cytotoxic activities against immortalized human normal fibroblast (CCD19Lu), liver (LO2), and lung (BEAS‐2B) cell lines as well as human liver (HepG2) and lung (A549) cancer‐cell lines. Synthetic ozonides were shown to have the highest cytotoxicity on HepG2 (IC50=0.19–0.59 μm), and some of these compounds selectively targeted liver cancer (selectivity index values for compounds 13 a and 14 a are 20 and 28, respectively) at levels that, in some cases, were higher than those of paclitaxel, artemisinin, and artesunic acid. In contrast some ozonides showed only moderate antimalarial activity against the chloroquine‐sensitive 3D7 strain of P. falciparum (IC50 from 2.76 to 24.2 μm; 12 b, IC50=2.76 μm; 13 a, IC50=20.14 μm; 14 a, IC50=6.32 μm). These results suggest that these derivatives have divergent mechanisms of action against cancer cells and malaria‐infected cells. A cyclic voltammetry study of the peroxides was performed, but most of the compounds did not show direct correlation in oxidative capacity–activity. Our findings offer a new source of antimalarial and anticancer agents through structural modification of peroxide compounds. [ DOI ]

Ozone-free synthesis of ozonides: Assembling bicyclic structures from 1,5-diketones and hydrogen peroxide / I. A. Yaremenko, G. G. dos Passos, P. S. Radulov et al. // The journal of organic chemistry. — 2018. — Vol. 83, no. 8. — P. 4402–4426. Reactions of 1,5-diketones with H2O2 open an ozone-free approach to ozonides. Bridged ozonides are formed readily at room temperature in the presence of strong Brønsted or Lewis acids such as H2SO4, p-TsOH, HBF4, or BF3·Et2O. The expected bridged tetraoxanes, the products of double H2O2 addition, were not detected. This procedure is readily scalable to produce gram quantities of the ozonides. Bridged ozonides are stable and can be useful as building blocks for bioconjugation and further synthetic transformations. Although less stabilized by anomeric interactions than bis-peroxides, ozonides have an intrinsic advantage of having only one weak O–O bond. The role of the synergetic framework of anomeric effects in bis-peroxides is to overcome this intrinsic disadvantage. As the computational data have shown, this is only possible when all anomeric effects in bis-peroxides are activated to their fullest degree. Consequently, the cyclization selectivity is determined by the length of the bridge between the two carbonyl groups of the diketone. The generally large thermodynamic preference for the formation of cyclic bis-peroxides disappears when 1,5-diketones are used as the bis-cyclization precursors. Stereoelectronic analysis suggests that the reason for the bis-peroxide absence is the selective deactivation of anomeric effects in a [3.2.2]tetraoxanonane skeleton by a structural distortion imposed on the tetraoxacyclohexane subunit by the three-carbon bridge. [ DOI ]

Top