Размер:
A A A
Цвет: C C C
Изображения Вкл. Выкл.
Обычная версия сайта

Преподаватели и сотрудники

Синдицкий Валерий Петрович

Синдицкий Валерий Петрович

Занимаемые должности

Декан (Инженерный химико-технологический факультет)

Заведующий кафедрой (Кафедра химии и технологии органических соединений азота)

Телефон

(495) 496-60-27

E-mail

vps@muctr.ru

Сайт https://muctr.ru
Уровень образования Высшее
Квалификация

Химик

Преподаваемые дисциплины

Химическая физика энергонасышенных материалов (ч.1)

Научно-исследовательская работа

Научно-исследовательский практикум

Преддипломная практика

Учёная степень

Доктор химических наук

Учёное звание Профессор
Наименование направления подготовки и (или) специальности

Химия и технология органических соединений азота

Данные о повышении квалификации и (или) профессиональной переподготовке

Повышение квалификации в Федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» по дополнительной профессиональной программе «Программа для руководителей, специалистов и членов комиссий по проверке знаний охраны труда», объемом 40 часов. Удостоверение о повышении квалификации № 04638 от 27.02.2014.

Повышение квалификации в Федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» по дополнительной профессиональной программе «Охрана труда для руководителей, специалистов и членов комиссий по проверке знаний требований охраны труда» 72 часа. Удостоверение о повышении квалификации № 0051 от 27.02.2017

Повышение квалификации в Федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» по дополнительной профессиональной программе «Информационные технологии в дистанционном, сетевом и смешанном обучении» с 3.05.2018 по 24.05.2018 в объеме 16 часов. Удостоверение 771801775370 от 31.05.2018 г.

Общий стаж работы 38 лет (с 01.04.1981)
Стаж работы по специальности 38 лет (с 01.04.1981)

Почетный работник высшего профессионального образования Российской Федерации. Медаль ""В память 850-летия Москвы"". Член Экспертного совет по спецхимии ВАК РФ, Член Научного Совета РАН по энергетическим конденсированным системам, член научного совет РАН по горению и взрыву, член редколлегии журнала «Физика горения и взрыва», Central European J. on Energetic Materials, International J. of Energetic Materials and Chemical Propulsion. Почетный член High Energy Materials Society of India , Индия.
Научные интересы:
Горение энергетических материалов (взрывчатых веществ, порохов, твердых топлив, пиротехнических составов). Регулирование баллистических характеристик порохов и твердых топлив. Разработка составов для безопасных средств инициирования. Создание информационных компьютерных баз данных по свойствам энергетических материалов.

Публикации

Combustion behavior and thermal decompositionof novel oxygen-rich triazolylfurazans / T. H. Hoang, V. P. Sinditskii, S. S. Semyakin, A. B. Sheremetev // Proc. 22nd Seminar of the New Trends in Research of Energetic Materials. — Vol. 2. — University of Pardubice Pardubice, Czech Republic, 2019. — P. 646–657. Combustion behavior and thermal decomposition of 3-nitro-4-[1-(trinitromethyl)-1H-1,2,4-triazol-3-yl]furazan (1) and 3-[(1-fluorodinitromethyl)-1H-1,2,4-triazol-3-yl]-4-nitrofurazan (2), 3,3’-azo-4,4’-bis-[1-(trinitromethyl)-1H-1,2,4-triazol-3-yl]furazan (3), which may have potential use as explosive and propellant ingredient, has been studied. The decomposition rate constants of compound 1, obtained under isothermal and nonisothermal conditions, are well described by Arrhenius equation with activation energy 129.5 kJ/mol in a wide temperature range of 110-182oC. The replacement of one nitro group in the trinitromethyl moiety with fluorine leads to a marked increase in the thermostability of compound 2, while the activation energy increases to 143-153 kJ/mol. An analysis of thermocouple data shows that the burning rate of triazoles 2 and 3 depends on the rate of heat release in the condensed phase. The increased stability of the fluoro analog 2 causes a decrease in the depth of its decomposition in the melt and shifts the leading reaction of its combustion into the gas phase. Thus, compound 2 burns according to the mechanism characteristic of volatile energetic compounds, whereas the leading reaction of combustion of trinitrocompounds 1 and 3 is in the condensed phase.

Comparative study of thermal stability and combustion of dinitropyrazole isomers / V. P. Sinditskii, T. H. Hoang, A. D. Smirnova et al. // Thermochimica Acta . — 2018. — Vol. 667. — P. 1–8. A comparative study of the thermal stability and combustion peculiarities of three dinitropyrazole isomers was carried out. It has been found that the rate-limiting stage of the decomposition of 1,3-dinitropyrazole (1,3-DNP) and 1,4-dinitropyrazole (1,4-DNP) both having the N-bounded nitro group, is the N→C migration of the nitro group rather than its elimination, followed by secondary decomposition reactions of non-aromatic 3H-pyrazole. In the case of 3,4-dinitropyrazole (3,4-DNP) the rate-limiting stage is assumed to be the nitro group elimination. All the studied pyrazole isomers revealed close burning rate vs. pressure dependences despite significant differences in the thermal stability and volatility. [ DOI ]

Features of thermal decomposition of n-substituted tetrazoles / V. P. Sinditskii, T. H. Hoang, A. D. Smirnova et al. // Proc. 21st Seminar of the New Trends in Research of Energetic Materials. — Vol. 2. — University of Pardubice Pardubice, Czech Republic, 2018. — P. 997–1013. In recent years, the concept of creating molecules that are a combination of several heterocycles is widely used. This approach allows obtaining compounds with new properties that expand the field of their application. Many tetrazole derivatives have high combustion rates. The introduction of the tetrazole fragment into the composition of the nitropyrazoles led to the synthesis of new fast-burning compounds. Investigation of the thermal stability of new pyrazolyltetrazoles showed that the decomposition of molecules begins with the decomposition of the tetrazole fragment, and the stability of the substances decreases with increasing electronegativity of the pyrazole substituent. It is suggested that the decomposition of N-substituted tetrazoles begins with the elimination of the nitrogen molecule directly from the tetrazole ring. In contrast, C-substituted tetrazoles undergo preliminary tetrazole-azidoimine isomerization. The flame structure of new pyrazolyltetrazoles was studied with the help of thin microthermocouples. It turned out that the decomposition reaction in the condensed phase controls the burning rate of these compounds. Dependences of surface (boiling) temperature on pressure are obtained.

Physico-chemical properties and combustion behavior of new oxygen-rich pyrazolyltetrazoles / V. V. Serushkin, V. P. Sinditskii, T. H. Hoang et al. // Proc. 21st Seminar of the New Trends in Research of Energetic Materials. — Vol. 2. — University of Pardubice Pardubice, Czech Republic, 2018. — P. 974–985. Physico-chemical characterization of new oxygen-rich N-[3-nitro-1-(trinitromethyl)-1H-pyrazol-4-yl]-1H-tetrazole and N- [1-(fluorodinitromethyl)-3-nitro-1H-pyrazol-4-yl]-1H-tetrazole has been conducted, including studies on the thermal decomposition, burning behavior, and flame structure. It was found that the trinitromethyl group and the tetrazole substituent have a close thermal stability and decompose simultaneously under the nonisothermal conditions. The fluorodinitromethyl fragment is more stable than the trinitromethyl group, the decomposition of this substituent and the tetrazole ring proceeds at different temperature intervals under the conditions of DSC tests. It turned out that pyrazolyltetrazoles have high burning rates. The structure of the combustion wave of fluorodinitromethyl compound was determined with the help of thin thermocouples. Combustion of the investigated substances obeys the combustion model with the leading reaction in the condensed phase. In the case of trinitromethyl compound, the leading reaction is the decomposition of the trinitromethyl group and the tetrazole moiety, but in the case of the other compound, the combustion rate is determined by the decomposition kinetics of the more stable but more energy-rich fluorodinitromethyl group, since rapid release of heat upon the tetrazole moiety decomposition is insufficient to maintain combustion.

Thermal and combustion behavior of novel oxygen-rich energetic pyrazoles / V. V. Serushkin, V. P. Sinditskii, T. H. Hoang et al. // Journal of Thermal Analysis and Calorimetry . — 2018. — Vol. 132, no. 1. — P. 127–142. Physicochemical properties, such as thermal decomposition, burning behavior, and flame structure of low-melting oxygen-rich energetic N-trinitromethyl-3,4-dinitropyrazole (1),N-trinitromethyl-3,5-dinitropyrazole (2), N-flurodinitro-methyl-3,5-dinitropyrazole (3), and N-[(difluoroamino)dinitromethyl]-3,5-dinitropyrazole (4) has been studied. It has been found that the stability of N-trinitromethyl azoles is relatively higher than stability of similar C-trinitromethyl heterocycles. Replacing one nitro group in the trinitromethyl moiety with fluorine or difluoroamine group changes the C-NO2 bond length and the thermal stability. However, there is no linear correlation between the rate constants and the CNO2 bond length, which indicates the presence of other factors affecting the stability of trinitro- and substituted dinitromethyl derivatives. The burning rates of the nitropyrazoles varied from 26.8 mm s-1 (for 1) to 77.5 mm s-1 (for 4) at 10 MPa. An analysis of thermocouple data shows that the burning rate of nitropyrazoles 1, 2, and 4 depends on the rate of heat release in the condensed phase. The increased stability of the fluorodinitromethyl compound 3 causes a decrease in the depth of its decomposition in the melt and shifts the leading reaction of its combustion into the gas phase. [ DOI ]

Top