Связаться с приемной комиссией

Меню раздела

Основное меню

Преподаватели и сотрудники

Бобров Михаил Федорович

Занимаемые должности

Доцент (Кафедра квантовой химии)





Сайт https://muctr.ru
Уровень образования Высшее


Преподаваемые учебные предметы, курсы, дисциплины (модули)

Основы квантовой химии

Квантовая химия

Учёная степень

Кандидат химических наук

Учёное звание Доцент
Наименование направления подготовки и (или) специальности

Химическая технология редких и рассеянных элементов

Данные о повышении квалификации и (или) профессиональной переподготовке

«Информационные технологии смешанного дистанционного обучения. Применение системы Moodle». ФГБОУ ВО РХТУ им. Д.И. Менделеева, 72 часа. 2012 г.

«Фундаментальные основы моделирования функциональных материалов». ФГБОУ ВО РХТУ им. Д.И. Менделеева, 32 часа. 2014 г.

Удостоверение о повышении квалификации № 77240489843 от 10.12.2016, "Фундаментальные основы моделирования электронных свойств функциональных материалов", 32 часа, ФГБОУ ВО "Российский химико-технологический университет им. Д.И. Менделеева"

Удостоверение о повышении квалификации № 772401673343 от 15.04.2016, «Технология проведения вебинаров» 36 часов, ФГБОУ ВО « Российский химико-технологический университет им. Д.И. Менделеева»

«Информационные технологии в дистанционно, сетевом и смешанном обучении». ФГБОУ ВО РХТУ им. Д.И. Менделеева, 32 часа. 2018 г.

Общий стаж работы 38 лет (с 01.03.1982)
Стаж работы по специальности 20 лет (с 01.03.2000)

Квантово-топологическая теория химической связи


Cyclic dipeptide peroxosolvates: first direct evidence for hydrogen bonding between hydrogen peroxide and a peptide backbone / A. V. Churakov, D. A. Grishanov, A. G. Medvedev et al. // CrystEngComm. — 2019. — Vol. 21, no. 33. — P. 4961–4968. Herein, peroxosolvates of the cyclic dipeptides disarcosine (C6H10N2O2·H2O2), dialanine (C6H10N2O2·2(H2O2)), diglycine (C4H6N2O2·2(H2O2) and C4H6N2O2·1.786(H2O2)·0.214(H2O)) were synthesized and studied by single crystal X-ray analysis and periodic DFT calculations. The hydrogen bonding networks of cyclic diglycine peroxosolvate and isomorphous hydrate were characterized using Bader analysis of periodic electron density and empirical correlations between enthalpy and metric and spectroscopic parameters of the H-bond. The obtained data for the peroxosolvate of cyclic dipeptides provided a molecular-level insight into the non-redox interaction of hydrogen peroxide with the peptide backbone in aqueous systems. In all structures, H2O2 acts as a proton donor in two hydrogen bonds. The carbonyl oxygen atom of the peptide (-CO-NH-) forms a relatively stronger hydrogen bond with the hydrogen peroxide molecule (32-34 kJ mol-1) as compared to that with water in the isomorphous hydrate of cyclic diglycine (26-28 kJ mol-1). The hydrogen atom of the peptide group (-CO-NH-) can form a moderate H-bond with hydrogen peroxide (25 kJ mol-1). The total hydrogen bonding energy of the peroxosolvate is higher than that of the corresponding hydrate (91 vs. 82 kJ mol-1). The stronger hydrogen bonding in peroxosolvates as compared to that in the hydrate and the fact that the intermolecular H-bonds C(O)NH⋯OCNH between cyclic dipeptides are not found in peroxosolvates, despite being prevalent in the structure of nonsolvated dipeptides, imply that hydrogen peroxide can interfere with the secondary structure of proteins via a mechanism that can lead to reversible inhibition or signaling in living systems. [ DOI ]

Effect of aluminum vacancies on the h 2 o 2 or h 2 o interaction with a gamma-alooh surface. a solid-state dft study / A. G. Medvedev, A. A. Mikhaylov, I. Y. Chernyshov et al. // International Journal of Quantum Chemistry. — 2019. — Vol. 119, no. 13. — P. e25920. The adsorption of a single H 2 O 2 or H 2 O molecule on a family of periodic slab models of γ-AlOOH is studied by solid-state DFT. The single H 2 O 2 or Н 2 О molecule interacts with the perfect (010) slab by intermolecular hydrogen bonds (H-bonds). In the models of γ-AlOOH with oxygen and aluminum vacancies, H 2 O 2 or Н 2 О also forms covalent O∙∙∙Al bonds. The energies of covalent O∙∙∙Al and H-bonds are estimated by a combined approach based on simultaneous consideration of the total binding energies with BSSE correction and empirical schemes of the Н-bond energy evaluation. The O∙∙∙Al bond energy ranges from ∼75 to ∼156 kJ mol −1 . The total energy of H-bond interactions in the case of H 2 O 2 exceeds that of Н 2 О by ∼30 kJ mol −1 for all considered slab models. In contrast to Н 2 О, a H 2 O 2 molecule always forms two H-bonds as the proton donor. The energy of these bonds noticeably increase on defect γ-AlOOH surfaces in comparison with the perfect slab due to formation of short (strong) H-bonds by adsorbed H 2 O 2 . [ DOI ]

Solving the enigma of weak fluorine contacts in the solid state: a periodic dft study of fluorinated organic crystals / E. O. Levina, I. Y. Chernyshov, A. P. Voronin et al. // RSC advances. — 2019. — Vol. 9, no. 22. — P. 12520–12537. The nature and strength of weak interactions with organic fluorine in the solid state are revealed by periodic density functional theory (periodic DFT) calculations coupled with experimental data on the structure and sublimation thermodynamics of crystalline organofluorine compounds. To minimize other intermolecular interactions, several sets of crystals of perfluorinated and partially fluorinated organic molecules are considered. This allows us to establish the theoretical levels providing an adequate description of the metric and electron-density parameters of the C–F⋯F–C interactions and the sublimation enthalpy of crystalline perfluorinated compounds. A detailed comparison of the C–F⋯F–C and C–H⋯F–C interactions is performed using the relaxed molecular geometry in the studied crystals. The change in the crystalline packing of aromatic compounds during their partial fluorination points to the structure-directing role of C–H⋯F–C interactions due to the dominant electrostatic contribution to these contacts. C–H⋯F–C and C–H⋯O interactions are found to be identical in nature and comparable in energy. The factors that determine the contribution of these interactions to the crystal packing are revealed. The reliability of the results is confirmed by considering the superposition of the electrostatic potential and electron density gradient fields in the area of the investigated intermolecular interactions. [ DOI ]

Azasydnone – novel "green" building block for designing high energetic compounds / I. L. Dalinger, O. V. Serushkina, N. V. Muravyev et al. // Journal of Materials Chemistry A. — 2018. — Vol. 6. — P. 18669–18676. [ DOI ]

Hydration of the carboxylate group in anti-inflammatory drugs: Atr-ir and computational studies of aqueous solution of sodium diclofenac / E. O. Levina, N. V. Penkov, N. N. Rodionova et al. // ACS Omega. — 2018. — Vol. 3, no. 1. — P. 302–313. Diclofenac (active ingredient of Voltaren) has a significant, multifaceted role in medicine, pharmacy, and biochemistry. Its physical properties and impact on biomolecular structures still attract essential scientific interest. However, its interaction with water has not been described yet at the molecular level. In the present study, we shed light on the interaction between the steric hindrance (the intramolecular N-H center dot center dot center dot O bond, etc.) carboxylate group (-CO2-) with water. Aqueous solution of sodium declofenac is investigated using attenuated total reflection-infrared (ATR-IR) and computational approaches, i.e., classical molecular dynamics (MD) simulations and density functional theory (DFT). Our coupled classical MD simulations, DFT calculations, and ATR-IR spectroscopy results indicated that the -CO2- group of the diclofenac anion undergoes strong specific interactions with the water molecules. The combined experimental and theoretical techniques provide significant insights into the spectroscopic manifestation of these interactions and the structure of the hydration shell of the -CO2- group. Moreover, the developed methodology for the theoretical analysis of the ATR-IR spectrum could serve as a template for the future IR/Raman studies of the strong interaction between the steric hindrance -CO2- group of bioactive molecules with the water molecules in dilute aqueous solutions. [ DOI ]